
TTT: A tree transduction language for syntactic and semantic processing

Abstract

In this paper we present the tree to tree
transduction language, TTT. We moti-
vate the overall ”template-to-template” ap-
proach to the design of the language, and
outline its constructs, also providing some
examples. We then show that TTT allows
transparent formalization of rules for parse
tree refinement, parse correction, predicate
disambiguation, and refinement and verbal-
ization of logical forms.

1 Introduction

Pattern matching and pattern-driven transforma-
tions are fundamental tools in AI. Many symbol
manipulation tasks including operations on parse
trees and logical forms, and even inference and as-
pects of dialogue and translation can be couched
in the framework of pattern-directed transduction
applied to list-structured symbolic expressions or
trees.

The TTT system is directly applicable to con-
cise and transparent specification of rules for such
tasks, in particular (as we will show), parse tree
refinement, parse tree correction, predicate dis-
ambiguation, logical form refinement, and verbal-
ization of logical forms into English.

Parse tree refinement (for our purposes) has en-
compassed such tasks as distinguishing passive
participles from past participles, temporal nomi-
nals from non-temporal ones, assimilation of verb
particles into single constituents, deleting empty
constituents, and particularizing prepositions. For
example, standard treebank parses tag both past
participles (as in “has written”) and passive par-
ticiples (as in “was written”) as VBN. This is un-
desirable for subsequent compositional interpre-

tation, as the meanings of past and passive par-
ticiples are distinct. We can easily relabel the
past participles as VBEN by looking for parse tree
subexpressions where a VBN is preceded by a
form of “have”, either immediately or with an in-
tervening adverb or adverbial, and replacing VBN
by VBEN in such subexpressions. Of course this
can be accomplished in a standard symbol manip-
ulation language like Lisp, but the requisite multi-
ple lines of code obscure the simple nature of the
transduction.

We have successfully used the new tree trans-
duction system sketched below to repair mal-
formed parses of image captions which were de-
rived from the Charniak-Johnson parser (Char-
niak and Johnson, 2005). In particular, we have
been able to repair systematic PP misattachments,
at least in the limited domain of image captions.
For example, a common error is attachment of a
PP to the last conjunct of a conjunction, where
instead the entire conjunction should be modi-
fied by the PP. Thus a statistical parse of the sen-
tence “ Tanya and Grandma Lillian at her high-
school graduation party” brackets as “Tanya and
(Grandma Lillian (at her highschool graduation
party.))”. We want to lift the PP so that “at
her highschool graduation party” modifies “Tanya
and Grandma Lillian”.

Another systematic error is faulty classification
of relative pronouns/determiners as wh-question
pronouns/determiners, e.g., “the student whose
mother contacted you” vs. “I know whose mother
contacted you” – an important distinction in com-
positional semantics. (Note that only the first oc-
currence, i.e., the relative determiner, can be para-
phrased as with the property that his, and only the
second occurrence, in which whose forms a wh-



nominal, can be paraphrased as the person with
the property that his.) An important point here is
that detecting the relative-determiner status of a
wh-word like whose may require taking account
of an arbitrarily deep context. For example, in
the phrase “the student in front of whose par-
ents you are standing”, whose lies two levels of
phrasal structure below the nominal it is seman-
tically bound to. Such phenomena motivate the
devices in TTT for detecting “vertical patterns”
of arbitrary depth. Furthermore, we need to be
able to make local changes ”on the fly” in match-
ing vertical patterns, because the full set of tree
fragments flanking a vertical match cannot in gen-
eral be saved using match variables. In the case
of a wh-word that is to be re-tagged as a relative
word, we need to rewrite it at the point where
the vertical pattern matches it, rather than in a
separate tree-(re)construction phase following the
tree-matching phase. .

We have been also able to perform Skolemiza-
tion, conjunct separation, simple inference, and
logical form verbalization with TTT and suspect
its utility to logic tasks will increase as develop-
ment continues.

A beta version of our system will be made
available; however the URL is not included in this
paper for anonymity.

2 Related Work

There are several pattern matching facilities avail-
able; however, none proved sufficiently general
and perspicuous to serve our various purposes.

The three related tools Tgrep, Tregex, and
Tsurgeon provide powerful tree matching and re-
structuring capabilities (Levy and Andrew, 2006).
However, Tgrep and Tregex provide no transduc-
tion mechanism, and Tsurgeon’s modifications
are limited to local transformations on trees. Also,
it presupposes list structures that begin with an
atom (as in Treebank trees, but not in parse trees
with explicit phrasal features), and its patterns are
fundamentally tree traversal patterns rather than
tree templates, and can be quite hard to read.

Peter Norvig’s pattern matching language from
Paradigms of AI Programming provides a nice
pattern matching facility within the Lisp environ-
ment, allowing for explicit templates with vari-
ables (that can bind subexpressions or sequences
of them), and including ways to apply arbitrary
tests to expressions and to match boolean com-

binations of patterns. However, there is no pro-
vision for ”vertical” pattern matching or subex-
pression replacement ”on the fly”. TTT supports
both horizontal and vertical pattern matching, and
both global (output template) and local (on the fly)
tree transduction. Also the notation for alterna-
tives, along with exclusions, is more concise than
in Norvig’s matcher, for instance not requiring ex-
plicit ORs.

Mathematica also allows for sophisticated pat-
tern matching, including matching of sequences
and trees. It also includes a sophisticated expres-
sion rewriting system, which is capable of rewrit-
ing sequences of expressions. It includes func-
tions to apply patterns to arbitrary subtrees of a
tree until all matches have been found or some
threshold count is reached; as well, it can return
all possible ways of applying a set of rules to an
expression. However, as in the case of Norvig’s
matcher there is no provision for vertical patterns
or on-the-fly transduction. (Wolfram Research,
Inc, 2010)

Snobol, originally developed in the 1960’s, is
a language focused on string patterns and string
transformations (Griswold, 1971). It has a no-
tably different flavor to the other transformation
systems. Its concepts of cursor and needle sup-
port pattern based transformations which rely on
the current position in a string at pattern match-
ing time, as well as the strings which preceding
patterns matched up to the current point. Snobol
also supports named and thereby recursive pat-
terns. While it includes recognition of balanced
parenthesis, the expected data type for Snobol is
the string – leaving it a less than direct tool for
intricate manipulation of trees. An Python exten-
sion SnoPy adds Snobol’s pattern matching capa-
bilities to Python. (Rozenberg, 2002)

Haskell also includes a pattern matching sys-
tem, but it is weaker than the other systems men-
tioned. The patterns are restricted to function
arguments, and are not nearly as expressive as
Mathematica’s for trees nor Peter Norvig’s system
or Snobol for strings. (Hudak et. al, 2000)

3 TTT

Pattern Matching

Patterns in TTT are hierarchically composed of
sub-patterns. Literal elements (such as atomic
symbols or tree fragments) are patterns which



match only themselves. More complicated pat-
terns are constructed through the use of pattern
operators. Most pattern operators require argu-
ments, but some may appear free-standing. Each
pattern operator has a unique method of directing
a match according to its supplied arguments. The
pattern syntax has been chosen to directly reflect
the structure of the trees to be matched. Trans-
ductions are specified by a special pattern opera-
tor and will be described in the next section.

The ten basic pattern operators are:

• ! - match exactly one sub-pattern argument

• + - match a sequence of one or more argu-
ments

• ? - match the empty sequence or one argu-
ment

• * - match the empty sequence or one or more
arguments

• {} - match any permutation of the arguments

• <> - match the freestanding sequence of the
arguments

• ˆ - match a tree which has a child matching
one of the arguments

• ˆ* - match a tree which has a descendant
matching one of the arguments

• ˆ@ - match a vertical path

• / - transduction operator (explained later)

Negation: The operators !, +, ?, *, and ˆ sup-
port negated patterns. Matching a negated pattern
causes the overall match to fail.

Iteration: The operators !, +, ?, *, and ˆ also
support iterative constraints. This enables one to
write patterns which match exactly n, at least n,
at most n, or from n to m times, where n and m
are integers. Eg. (![3] A) would match the
sequence A A A.

Unconstrained Patterns: The first four pattern
operators may also be invoked without arguments,
as: !, +, ?, *. These match any single tree,
any non-empty sequence of trees, the empty se-
quence or a sequence of one tree, and any (empty
or non-empty) sequence of trees.

Vertical Paths: The vertical path operator (ˆ@
X1 X2 ... Xm) matches a tree which has

root matching X1, a child matching X2, which in
turn has a child that matches X3, and so on.

Any of the arguments to a pattern operator may
be composed of arbitrary sub-patterns.

Bindings: Operators may be bound, in that the
tree sequence which was matched by an operator
is retained in a variable. The variable names may
be specified by appending additional information
to the operator names (i.e. !1, !a, !2a, ...).

Constraints on Bindings Arbitrary com-
putable constraints on bindings are supported.
[Example? –NOT REALLY IMPLEMENTED–
satisfies-constraints always returns bindings for
now]

Sticky Variables: Variables may be specified
as sticky or non-sticky, where sticky variables
which appear more than once in a pattern are con-
strained to match structurally identical tree se-
quences to the first occurrence of the variable at
each location.

Predicates Arbitrary predicates can be used
during the pattern matching process (and conse-
quently the transduction process). Symbols with
names ending in the question mark, and with as-
sociated function definitions, are interpreted as
predicates. When a predicate is encountered dur-
ing pattern matching, it is called with the current
subtree as input. The result is only inspected as
nil/non-nil, and when nil is returned the current
match fails. [Predicates are not bound to right
now! Predicates with pattern-level arguments are
not supported!]

Pattern Details and Examples Pattern Exam-
ples:

• (! (+ A) (+ B)) - matches a non-
empty sequence of A’s or a non-empty se-
quence of B’s, but not a sequence containing
both

• (* (<> A A)) - matches a sequence of
an even number of A’s

• (B (* (<> B B))) - matches a se-
quence of an odd number of B’s

• (({} A B C)) - matches (A B C) (A
C B) (B A C) (B C A) (C A B)
and (C B A) and nothing else

• ((<> A B C)) - matches (A B C) and
nothing else



• (ˆ* X) - matches any tree with descendant
X

• (ˆ@ (+ (@ *)) X) - matches a tree
with leftmost leaf X

Binding Examples:
Pattern Tree Bindings
! (A B C) ( ! (A B C)

(A ! C) (A B C) ( ! B)
( * F) (A B (C D E) F) ( * A B (C D E))
(A B ? F) (A B (C D E) F) ( ? (C D E))
(A B ? (C D E) F) (A B (C D E) F) ( ? )
(ˆ@ ! (C *) E) (A B (C D E) F) (ˆ@ (A B (C D E) F)) ( * D E)
(A B (<> (C D E)) F) (A B (C D E) F) (<> (C D E))
(A B (<> C D E) F) (A B (C D E) F) fail

Transductions

Transductions are specified with the transduction
operator, /, which takes two arguments. The left
argument may be any tree pattern and the right ar-
gument may be constructed of literals, variables
from the lhs pattern, and function calls [NEED
EXAMPLE; SHOULD I MENTION APPLY!?].
[MENTION LOCAL TRANSDUCTIONS FOR
PARALLELISM]

Transductions may be applied to the roots of
trees, subtrees, at most once, or until conver-
gence. When applying transductions to arbitrary
subtrees, they are searched top-down, left to right.
When a match to the transduction lhs pattern oc-
curs, the resulting bindings and transduction rhs
are used to create a new tree, which then replaces
the tree which matched.

Here are a few examples of simple template to
template transductions:

• (/ X Y) - replaces the symbol X with the
symbol Y

• (/ (! X Y Z) (A)) - replaces any X,
Y, or Z with A

• (/ (! X ) (! !)) - duplicates an X

• (/ (X * Y) (X Y)) - remove all sub-
trees between X and Y

• (/ ( ! * !1) ( !1 * !)) -
swaps the subtrees on the boundaries

A transduction operator may appear nested
within a composite pattern. The enclosing pattern

effectively restricts the context in which the trans-
duction will be applied, because only a match to
the entire pattern will trigger a transduction. In
this case, the transduction is applied at the lo-
cation in the tree where it matches. The rhs of
such a transduction is allowed to reference the
bindings of variables which appear in the enclos-
ing pattern. We call these local transductions, to
distinguish from whole-tree replacement. Local
transductions are especially advantageous when
performing vertical path operations, and have a
very concise syntax. For example, the trans-
duction (ˆ@ (* ((! S SBAR) +)) (/
(WH !) (REL-WH (WH !)))) applied
to the tree (SBAR (S (S (WH X) B) A))
yields the new tree (SBAR (S (S (REL-WH
(WH X)) B) A)). Additional examples ap-
pear later (especially in the parse tree refine-
ment section). [SHOULD I MENTION NON-
ITERATED ENCLOSING PATTERNS?] [SIM-
PELR EXAMPLE?] [WHAT ABOUT LONG-
DISTANCE BINDINGS SUCH AS ( ! (/ !1
!))?]

TTT also supports functions, with bound
variables as arguments, in the rhs templates, such
as join-with-dash!, which concatenates all
the bound symbols with intervening dashes. E.g.
the transduction
“(/ (PP (IN !))
((join-with-dash! PP !) (IN
!)))” applied to the subtree (PP (IN
FROM)) yields (PP-FROM (IN FROM)) and
applied to the subtree (PP (IN TO)) yields
(PP-TO (IN TO)). [DO I NEED A SIM-
PLER EXAMPLE?] One can imagine additional
functions, such as reverse!, l-shift!,
r-shift!, or any other function of a list of
nodes which is useful to the application at hand.
Symbols with names ending in the exclamation
point, which are associated with function defini-
tions, and appear as the first element of a list are
executed during template construction.

Relations between TTT and formal models

[RENAME AS THEORETICAL PROPER-
TIES?] A good overview of the dimensions
of variability among formal tree transducers is
given in Capturing practical natural language
transformations, Keven Knight. The main prop-
erties are restrictions on the height of the tree
fragments allowed in rules, linearity, and whether



the rules can delete arbitrary subtrees. Among
the more popular and recent ones, synchronous
tree substitution grammars (STSG), synchronous
tree sequence substitution grammars (STSSG),
and multi bottom-up tree transducers (MBOT)
constrain their rules to be linear and non-deleting,
which is important for efficient rule learning and
transduction execution (Chiang, 2004; Galley et.
al, 2004; Yamada and Knight, 2001; Zhang et. al,
2008; Maletti, 2010). The language TTT does not
have any such restrictions. While this flexibility
does increase worst-case computational complex-
ity of some operations, TTT is intended to be a
full programming language, enabling the user to
direct powerful and dramatic transformations on
trees. In fact, TTT is Turing complete, as we will
soon show.

Additionally, pattern predicates, binding con-
straints, and function application in the right hand
sides of rules are features present in TTT which
are not included in the above formal models.

Turing Completeness: An informal argument

A Turing machine is a 5-tuple (Σ, Q, F, q0, δ),
where Σ is a finite alphabet, Q is a finite state
set, F ⊆ Q is a set of accepting states, q0 is the
start state, and δ : Q × Σ ⇒ Q × Σ × {L,R}
is the transition function. A Turing machine is
equipped with a double-ended infinite tape (only
finitely many cells of which may be non-blank at
any particular time) and a movable head, which
slides from cell to cell on the tape according to
the current state, current symbol on the cell un-
der the head, and the corresponding {L,R} entry
in the transition table. The Turing machine begins
in the start state, and halts once it reaches a halting
state (one with no transitions out). If the halting
state is also an accepting state, then the original
string contents of the tape is said to be accepted,
otherwise it is said to be rejected. Not every Tur-
ing machine halts on all inputs.

In order to show Turing equivalence of TTT,
we must show how to simulate an arbitrary Turing
machine with transduction rules. Each element
of the finite state sets and alphabet can easily be
represented by symbols in Lisp. The tape can be
represented as a sequence of height 1 trees. The
state and head position can be encoded into the
symbol sequence by wrapping the symbol under
the head in a list, with the first element being the
state.

Let the current state be q, the symbol under
the head s, the symbol to output r, the next
state p for an arbitrary transition. The transition
table can be encoded into TTT rules as follows,
according to the head direction specified by the
rule: (q, s, r, p, L) becomes (/ ( * !l (q
s) !r *r) ( * (p !l) r !r *r))
(q, s, r, p, R) becomes (/ ( * !1 (q s)
!r *r) ( * !l r (p !r) *r))

Anotating the first element of the input se-
quence via the rule ((/ ? (q0 ?)) *)
ensures that TTT’s simulation begins in the start
state.

The stipulation that no moves originate from
the halting state, and that only one state exists in
the sequence at a time, forces TTT to halt when
appropriate.

Nondeterminism and noncommutativity: In
general, given a set of transductions (or even a sin-
gle transduction) and an input tree there may be
several ways to apply the transductions, resulting
in different trees. This phenomenon comes from
two sources:

• rule application order - transductions are not
in general commutative

• bindings - a pattern may have many sets of
consistent bindings to a tree (E.g. pattern
( * *1) can be bound to the tree (X Y
Z) in four distinct ways).

• subtree search order - a single transduction
may be applicable to a tree in multiple lo-
cations [Ex: (/ ! X) could replace any
node of a tree, including the root, with a sin-
gle symbol].

Therefore some trees may have many reduced
forms with respect to a set of transductions (where
by reduced we mean a tree to which no trans-
ductions are applicable) and even more reachable
forms.

[I DON’T LIKE THIS SECTION, I FEEL
LIKE PROBABILISTIC SEARCH IS NOT
TREATED IN SUFFICIENT DETAIL AND
WHAT WE ACTUALLY DO SOUNDS LIKE A
COP OUT NEXT TO IT]

One can imagine a few ways to tackle this:

• Exhaustive exploration - Given a tree and
a set of transductions, compute all reduced
forms. [note: it is possible for this to be



an infinite set, so a lazy computation may be
necessary.] Mathematica provides this style
of feature with its expression rewriting sys-
tem.

• Probabilistic search - Assign weights to
transductions, where the resulting trees are
weighted according to the product of the
weights of the rules applied, starting with a
fixed weighed source tree.

• What we actually do - Given a tree and a list
of transductions, for each transduction (in
order), apply the transduction in top-down
fashion in each feasible location (matching
lhs), always using the first binding which re-
sults from a “left most” search.

The first method has the unfortunate effect of
transducing one tree into many (bad for parse re-
pair, probably bad for other applications as well).
The latter method is particularly reasonable when
your set of transductions is not prone to interac-
tion or multiple overlapping bindings. We intend
to implement an “all-reductions” method which
would parallel the ReplaceAll function of Mathe-
matica. [SHOULD I CUT THIS?]

4 Some illustrative examples

Working with Parse Trees
Refinement: To distinguish between past an pas-
sive participles, we want to search for the verb
has, and change the participle token correspond-
ingly. These two transductions are equivalent, the
first is global and the second is an example of a lo-
cal or on-the-fly transduction. Observe the more
concise form, and simpler variable specifications
of the second transduction.
(/ (VB * (VBZ HAS) *1 (VBN !)

*2) (VB * (VBZ HAS) *1 (VBEN
!) *2))
(VB * (VBZ HAS) * ((/ VBN

VBEN) !) *)
Here is a simple transduction to delete empty

constituents, which sometimes occur in the
Brown corpus [CITE THIS?].
(/ ( * () *1) ( * *1))
pTo distinguish temporal and non-temporal

nominals, we use a predicate function to detect
temporal nouns, and then annotate the NP tag
accordingly. [WHICH EXAMPLE SHOULD I
KEEP, GLOBAL OR LOCAL?]

(/ (NP * nn-temporal?)
(NP-TIME * nn-temporal?))
((/ NP NP-TIME) *

nn-temporal?)
Assimilation of verb particles into single

constituents is useful to semantic interpretation,
and is accomplished with the transductions: (/
(VP (VB !1) ( (PRT (RP !2)) (NP

*1))) (VP (VB !1 !2) (NP *1)))
We often particularize PPs to show the

preposition involved, e.g., PP-OF, PP-FROM,
etc. Note that this transduction uses the
join-with-dash! function, which enables
us to avoid writing a separate transduction for
each preposition. (/ (PP (IN !) *1)
’((join-with-dash! PP !) (IN
!) *1))

We also change (PP (TO TO) ...) to (PP-TO (IN
TO) ...) (since the WSJ annotations don’t distin-
guish preposition TO and verb TO!) [CITE PTB?
TAKE THIS OUT? ARE THESE TRANSDUC-
TION OK? (NO GAPS BETWEEN PP AND (IN
!))] (/ (PP (TO TO) *) (PP-TO (IN
TO) *))

Statistical Parse Repairs: - parse tree correc-
tion e.g., correcting certain systematic PP misat-
tachments, at least for certain applications (ours
was caption processing); e.g., misattachment of
certain types of PPs to the last conjunct of a
conjunction, where instead the entire conjunc-
tion should be modified by the PP adjunct; (give
specific example desired kind of transduction)
“ Tanya and Grandma Lillian at her highschool
graduation party”

Working with Logical Forms

Skolemization: [SHOULD I MENTION EPI-
LOG? – it would compromise anonymity but if
I’m using it here...]

We wrote the function subst-new! to
replace all occurrences of a symbol in an ex-
pression with a new one, consistently labeled
as such. It uses a TTT transduction to accom-
plish this. Skolemization is then performed
via the transduction (/ (EXISTS ! !1
!2) (subst-new! ! ( !1 and.cc
!2))))

Inference: We use the following rule to ac-
complish inferences such as if most things with
property X have property Y, and most things with
property Y have property Z, then many things



with property X also have property Z.
(/ ( * (most !.x ( !.x (!.p

pred?)) ( !.x (!.q pred?))) *
(most !.x ( !.x !.q) ( !.x (!.r
pred?))) *) (many !.x ( !.x
!.p) ( !.x !.r))) [mention reversed
order?]

Predicate Disambiguation: The follow-
ing rules disambiguate between various
senses of have (e.g. as-part, as-possession,
as-eating-food, as-experience, as-feature):
(/ ((det animal?) have.v (det
animal-part?)) (all-or-most
x (x animal?) (some e ((pair
x e) enduring) (some y (y
animal-part?) ((x have-as-part.v
y) ** e)))))
(/ ((det agent?) have.v (det

possession?)) (many x (x agent?)
(some e (some y (y possession?)
(x possess.v y) ** e))))
(/ ((det animal?) have.v (det

food?)) (many x (x animal?)
(occasional e (some y (y food?)
(x eat.v y) ** e))))
(/ ((det person?) have.v (det

event?)) (many x (x person?)
(occasional e (some y (y event?)
((x experience.v y) ** e)))))
(/ ((det agent?) have.v (det

property?)) (many x (x agent?)
(some e ((pair x e) enduring)
(some y ((y (apply! append-of
property?)) x) ** e))))

Logical Interpretation:
The following transductions directly map

from parse trees to an intermediate logical form:
(/ (S (NP (DT the) !) (VP +))
(some x (x !) +)) (/ (some X
(X !.x) (AUX IS) !.y) (some x
(x !.x) (x !.y))) (/ ( *.a (NNP
!.x) (NNP !.y) (NNP !.z) (NNP
!.f) *.b) ( *.a (NNP !.x !.y
!.z !.f) *.b)) (/ ( *.a (NNP
!.x) (NNP !.y) (NNP !.z) *.b)
( *.a (NNP !.x !.y !.z) *.b))
(/ ( *.a (NNP !.x) (NNP !.y)

*.b) ( *.a (NNP !.x !.y) *.b))
(/ (NNP +) (make-name! ( +))) (/
(NN !) (make-noun! !)) (/ (JJ
!) (make-adj! !)) (/ (ADJP !)

!) (/ (NP !) !) (/ (S !.x (vp
(aux !.f) (np (dt !.y) !.z)))
( !.x !.z))

5 Conclusion

The TTT language is well-suited to the applica-
tions it was aimed at, and is already proving use-
ful in current syntactic/semantic processing appli-
cations. It provides a very concise, transparent
way of specifying transformations that previously
required extensive symbolic processing. Remain-
ing issues (e.g., efficient access to rules that are
locally relevant to a transduction; ...).

The language also holds promise for rule-
learning, thanks to its simple template-to-
template basic syntax. The kinds of learning
envisioned are learning parse-tree repair rules,
and perhaps also LF repair rules and LF-to-
English rules (which is made plausible by the very
English-like syntax of LF in Episodic Logic).

References
Eugene Charniak and Mark Johnson. 2005. Coarse-

to-Fine n-Best Parsing and MaxEnt Discriminative
Reranking. Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL’05), 173–180. Association for Computa-
tional Linguistics, Ann Arbor, MI, USA.

David Chiang. 2004. Evaluation of Grammar For-
malisms for Applications to Natural Language Pro-
cessing and Biological Sequence Analysis. Phd.
Thesis. University of Pennsylvania.

Michel Galley and Mark Hopkins and Kevin Knight
and Daniel Marcu 2004. What’s in a Transla-
tion Rule?. Proceedings of the 2004 Meeting of
the North American chapter of the Association for
Computational Linguistics (NAACL ’04), 273–280.
Boston, MA, USA.

Ralph Griswold 1971. The SNOBOL4 programming
languge. Prentice-Hall, Inc. Upper Saddle River,
NJ, USA.

Paul Hudak, John Peterson, and Joseph Fasel.
2000. A Gentle Introduction To Haskell: Ver-
sion 98. Los Alamos National Laboratory.
http://www.haskell.org/tutorial/patterns.html.

Roger Levy and Galen Andrew. 2006. Tregex and
Tsurgeon: tools for querying and manipulating tree
data structures. Language Resources Evaluation
Conference (LREC ’06).

Andreas Maletti. 2010. Why synchronous tree substi-
tution grammars?. Human Language Technologies:
The 2010 Annual Conference of the North Amer-
ican Chapter of the Association for Computational



Linguistics (HLT ’10). Association for Computa-
tional Linguistics, Stroudsburg, PA, USA.

Don Rozenberg 2002. SnoPy - Snobol
Pattern Matching Extension for Python.
http://snopy.sourceforge.net/user-guide.html.

Wolfram Research, Inc. 2010. Wolfram Mathe-
matica 8 Documentation. Champagne, IL, USA.
http://reference.wolfram.com/mathematica/guide/RulesAndPatterns.html.

Kenji Yamada and Kevin Knight 2001. A Syntax-
Based Statistical Translation Model. Proceedings
of the 39th Annual Meeting on Association for
Computational Linguistics (ACL ’01), 523–530.
Stroudsburg, PA, USA.

Min Zhang and Hongfei Jiang and Aiti Aw and
Haizhou Li and Chew Lim Tan and Sheng Li 2008.
A tree sequence alignment-based tree-to-tree trans-
lation model. Proceedings of the 46th Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL ’08).


