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Abstract

In this work we leverage commonsense knowl-
edge in the form of knowledge paths to es-
tablish connections between sentences, as a
form of explicitation of implicit knowledge.
Such connections can be direct (singlehop
paths) or require intermediate concepts (mul-
tihop paths). To construct such paths we com-
bine two model types in a joint framework we
call CO-NNECT: a relation classifier that pre-
dicts direct connections between concepts; and
a target prediction model that generates tar-
get or intermediate concepts given a source
concept and a relation, which we use to con-
struct multihop paths. Unlike prior work that
relies exclusively on static knowledge sources,
we leverage language models finetuned on
knowledge stored in ConceptNet, to dynam-
ically generate knowledge paths, as explana-
tions of implicit knowledge that connects sen-
tences in texts. As a central contribution we
design manual and automatic evaluation set-
tings for assessing the quality of the generated
paths. We conduct evaluations on two argu-
mentative datasets and show that a combina-
tion of the two model types generates mean-
ingful, high-quality knowledge paths between
sentences that reveal implicit knowledge con-
veyed in text.

1 Introduction

Commonsense knowledge covers simple facts
about the world, people and everyday life, e.g.,
Birds can fly or Cars are used for driving. It is
increasily used for many NLP tasks, e.g. for ques-
tion answering (Mihaylov et al., 2018), textual en-
tailment (Weissenborn et al., 2018), or classifying
argumentative functions (Paul et al., 2020). In this
work, we leverage commonsense knowledge in the
form of single- and multihop knowledge paths for
establishing connections between concepts from
different sentences in texts, and show that these

paths can explicate implicit information conveyed
by the text. Connections can either be direct, e.g.
given the sentences The car was too old and The
engine broke down, the concepts car and engine
can be linked with a direct relation (singlehop path)
car→ HASA → engine; or indirect – here inter-
mediate concepts are required to establish the link,
as between Berliners produce too much waste and
Environmental protection should play a more im-
portant role, where the link between waste and envi-
ronmental protection requires a multihop reasoning
path: waste→ RECEIVESACTION → recycle→
PARTOF→ environmental protection.

We show that two complementary model types
can be combined to solve the two subtasks: (i)
for predicting singlehop paths between concepts,
we propose a relation classification model that is
very precise, but restricted to direct connections be-
tween concepts; (ii) for constructing longer paths
we rely on a target prediction model that can gen-
erate intermediate concepts and is thus able to
generate multihop paths. However, the interme-
diate concepts can be irrelevant or misleading. To
our knowledge, prior work has applied either re-
lation classification or target prediction models.
We propose CO-NNECT, a framework that estab-
lishes COmmonsense knowledge paths for CON-
NECTing sentences by combining relation classi-
fication and target prediction models, leveraging
their strengths and minimizing their weaknesses.
With CO-NNECT, we obtain high-quality knowl-
edge paths that explicate implicit knowledge con-
veyed by the text.

We focus on commonsense knowledge in Con-
ceptNet (Speer et al., 2017), a knowledge graph
(KG) that represents concepts (words or phrases)
as nodes, and relations between them as edges,
e.g., 〈oven,USEDFOR, baking〉. As instances of the
model types we use COREC (Becker et al., 2019), a
multi-label relation classifier that predicts relation
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types and that we enhance with a pretrained lan-
guage model; and COMET (Bosselut et al., 2019),
a pretrained transformer model that learns to gen-
erate target concepts given a source concept and a
relation. In contrast to models that retrieve knowl-
edge from static KGs (Mihaylov et al., 2018; Lin
et al., 2019), both models are fine-tuned on Con-
ceptNet and applied on the fly, to dynamically gen-
erate knowledge paths that generalize beyond the
static knowledge, allowing us to predict unseen
knowledge paths. We compare our models to a
baseline model that solely relies on static KGs.

We evaluate our framework on two English argu-
mentative datasets, IKAT (Becker et al., 2020) and
ARC (Habernal et al., 2018), which offer annota-
tions that explain implicit connections between sen-
tences. While knowledge paths have been widely
used in NLP downstream tasks, a careful evalua-
tion of these paths has not received much attention.
As a central contribution of our work, we address
this shortcoming by designing manual and auto-
matic settings for path evaluation: we evaluate the
relevance and quality of the paths and their ability
to represent implicit knowledge in an annotation
experiment; and we compare the paths to the anno-
tations of implicit knowledge in IKAT and ARC,
using automatic similarity metrics.

Our main contributions are: i) we propose CO-
NNECT, a framework that combines two comple-
mentary types of knowledge path prediction models
that have previously only been applied separately;1

ii) we show that commonsense knowledge paths
generated with CO-NNECT effectively represent
implied knowledge between sentences; iii) we pro-
pose an evaluation scheme that measures the qual-
ity of the knowledge paths, going beyond many ap-
proaches that use knowledge paths for downstream
applications without analyzing their quality.

2 Related Work

In this work we combine relation classification
and target prediction for generating commonsense
knowledge representations over text. Relation
classification covers a range of methods and learn-
ing paradigms for representing relations. A vari-
ety of neural architectures such as RNNs (Zhang
et al., 2018), CNNs (Guo et al., 2019), sequence-
to-sequence models (Trisedya et al., 2019) or lan-
guage models (Wu and He, 2019) achieved state-

1The code for our framework can be found here: https:
//github.com/Heidelberg-NLP/CO-NNECT.

of-the-art results. To our knowledge, Becker et al.
(2019) is the only work that proposed a relation
classification model specifically for ConceptNet
relations, which we adapt for our work. Besides
COMET (Bosselut et al., 2019), the model used
in our approach, Saito et al. (2018) perform tar-
get prediction on ConceptNet using an attentional
encoder-decoder model. They improve the KB
completion model of Li et al. (2016) by jointly
scoring triples and predicting target concepts.

Utilizing commonsense knowledge paths.
When using commonsense knowledge for question
answering (Mihaylov et al., 2018), commonsense
reasoning (Lin et al., 2019) or NLI (Kapanipathi
et al., 2020), most approaches rely on paths re-
trieved from static knowledge resources. In con-
trast, we propose a framework that in addition
makes use of dynamic knowledge provided by lan-
guage models. Few other models have used knowl-
edge paths dynamically, e.g. Paul et al. (2020),
who enrich ConceptNet on the fly when classifying
argumentative functions.
Wang et al. (2020) make use of language mod-
els for question answering. They generate multi-
hop paths by sampling random walks from Con-
ceptNet and finetune a language model on these
paths to connect question and answers, improving
accuracy on two question answering benchmarks.
Bosselut et al. (2021) generate knowledge paths
using a language model for zero-shot question an-
swering, which they use to select the answer to
a question, surpassing performance of pretrained
language models on SocialIQA (a multiple-choice
question answering dataset for probing machine’s
emotional and social intelligence in a variety of
everyday situations). Similarly, Chang et al. (2020)
incorporate knowledge from ConceptNet in pre-
trained language models for SocialIQA. They ex-
tract keywords from question and answers, query
ConceptNet for relevant triples, and incorporate
them in their language models via attention. Their
evaluation shows that their knowledge-enhanced
model outperforms knowledge-agnostic baselines.
Finally, Paul and Frank (2020) propose an atten-
tion model that encodes commonsense inference
rules and incorporates them in a transformer based
reasoning cell, taking advantage of pretrained lan-
guage models and structured knowledge. Their
evaluation on two reasoning tasks shows that their
model improves performance over models that lack
external knowledge. Hence, none of these sys-

https://github.com/Heidelberg-NLP/CO-NNECT
https://github.com/Heidelberg-NLP/CO-NNECT
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tems directly evaluates the quality of the generated
paths, but measure the effectiveness of common-
sense knowledge indirectly by evaluation on down-
stream tasks. We will address this shortcoming in
our work by carefully evaluating the quality of the
generated paths.

3 Enriching Texts with Commonsense
Knowledge Paths

This section describes CO-NNECT, the framework
we propose for enriching texts with commonsense
knowledge, by establishing relations or paths be-
tween concepts from different sentences. Towards
this aim, we apply relation classification and target
prediction models in combination. We first charac-
terize differences between the two model types and
their instantiations, COREC-LM and COMET, de-
scribe how we adapt them to our task and evaluate
them on ConceptNet to assess their performance
(§3.1). We then show how we utilize the models
to establish connections between concepts in texts
(§3.2) and present a baseline model that uses Con-
ceptNet as a static KG to establish commonsense
knowledge paths (§3.3).

3.1 Comparing and Evaluating Model Types

Relation classification and target prediction both
aim at representing relational commonsense knowl-
edge, but the respective task settings are funda-
mentally different. We choose two models that
have been developed for representing common-
sense knowledge in CN: COREC, a relation classi-
fication and COMET, a target prediction model.

Relation Classification with COREC-LM. A
relation classifier is ideally suited to predict direct
relations between concepts, hence we can apply
COREC (Becker et al., 2019), an open-world multi-
label relation classification system, for this task.
Given a pair of concepts cs, ct from sentences, it
predicts one or several relations ri from a set of
relation types RCN that hold between cs and ct. We
enhance the original neural model with the pre-
trained language model DistilBERT (Sanh et al.,
2019) to construct a classifier we call COREC-LM.
We finetune this model on ConceptNet by mask-
ing the relations and use sigmoid as output layer
to model the probability of each relation indepen-
dently, accounting for ambiguous relations in CN.

Target Prediction with COMET. To generate
multihop paths that include (possibly novel) in-
termediate concepts, we apply COMET (Bosselut

et al., 2019), a transformer encoder-decoder based
on GPT-2 (Radford et al., 2019). Input to the model
is a source concept cs and a relation ri. Then the
pretrained language model is finetuned using Con-
ceptNet as labelled train set for the task of gener-
ating new concepts. Depending on the beam size,
COMET can propose multiple targets per input
instance.

Datasets. To compare model performances, we
evaluate COREC-LM and COMET on the CN-
100k benchmark dataset of Li et al. (2016), which
is based on the OMCS subpart of ConceptNet. The
dataset comprises 37 relation types such as ISA,
PARTOF or CAUSES and contains 100k relation
triples in the train set and 1200 in the develop-
ment and the test set, respectively. CN-100k con-
tains a lot of infrequent relations which are hard
to learn and often overspecific (e.g. HASFIRST-
SUBEVENT), and hence not useful for establishing
high quality relations and paths between concepts.
We therefore extract a subset that contains all triples
of the 13 most frequent relations (CN-13).2 CN-13
covers 90,600 triples for training, 1080 triples for
development, and 1080 triples for testing.

Since our application task requires that the re-
lation classifier also learns to detect that a given
concept pair is not related, we extend the data for
training and testing COREC-LM with a RANDOM

class that contains unrelated concept pairs, which
we add to CN-100k and CN-13.3

PoS Sequence Filtering. We apply a type-
based PoS sequence filtering for COREC-LM and
COMET, where the type is dependent on the pre-
dicted relation. The relation ISA, for example,
is supposed to connect two noun phrases; in con-
trast, HASPREREQUISITE typically relates two
verb phrases. We determine frequent PoS sequence
patterns for specific argument types from the Con-
ceptNet resource and use them to filter relation and
path predictions.

Metrics. We evaluate COREC-LM in terms of
weighted F1-scores, precision and recall, which
is its genuine evaluation setting. For COMET we
report precision scores for the first prediction with
highest confidence score (hits@1); we further re-
port hits@10 which gives information if the correct

2These are: ATLOCATION, CAUSES, CAPABLEOF,
ISA, HASPREREQUISITE, HASPROPERTY, HASSUBEVENT,
USEDFOR, CAUSESDESIRE, DESIRES, HASA, MOTIVATED-
BYGOAL and RECEIVESACTION.

3For details about the construction of the RANDOM class,
cf. Appendix.
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Figure 1: Our framework CO-NNECT: It finds single- and multihop paths between concepts, as explicitations of
implicit knowledge that connects sentences.

triple is included in the first ten predictions (which
will be important since we later use a beamsize
of 10 for generating paths). In addition, we re-
port accuracy using the Bilinear AVG model of
Li et al. (2016) (COMET’s genuine evaluation set-
ting), which is trained on CN-100k and produces
a probability for a generated relation triple to be
correct. Following Bosselut et al. (2019), we apply
a beamsize of 1 and a threshold at 0.5 for judging
a triple as correct.

Model Performances. COREC-LM achieves
high F1-scores on CN-100k (76.5) and CN-13
(86.0).4 Scores are significantly lower when adding
the RANDOM class (-7pp on CN-100k&CN-13),
indicating that detecting unrelated concept pairs
is not trivial. The results show that a strength
of COREC-LM is its precision (90.1/CN-100k;
88.2/CN-13) – which we will leverage when com-
bining models. COMET achieves high accuracy
scores (92.3/CN-100k; 96.3/CN-13) according to
the bi-score. For the much stricter metric hits@1
which judges a triple as correct only if it matches
the respective triple in the testset, much lower
scores are achieved (25/CN-100k; 23.5/CN-13),
which is evident given the wide range of possi-
ble target generations. Higher scores for hits@10
(65.3/CN-100k; 65.9/CN-13) show that the chance
for correct predictions significantly rises with in-
creasing beam size.

In sum, COREC-LM and COMET both aim

4The original version of COREC (Becker et al., 2019)
achieves F1 of 53.31/CN-100k; 72.33/CN-13.

at learning commonsense knowledge representa-
tions, but tackle different tasks and have different
strengths and weaknesses. COREC-LM is very
precise in its predictions, but is restricted to pre-
dicting direct relations between two given concepts.
COMET is more powerful since it can genuinely
generate novel target concepts and thus can gener-
ate multihop paths. However, it tends to be more
imprecise, and bears the risk of generating irrele-
vant or noisy concepts. Hence, a combination of
models seems beneficial, to predict high-quality
single- and multihop paths between concepts.

3.2 Establishing Connections Using Relation
Classification and Target Prediction

In the following we describe how we combine and
apply COREC-LM and COMET in a joint frame-
work, CO-NNECT, to establish high-quality knowl-
edge paths between sentences. An overview is
given in Fig.1. In the first step we extract relevant
concepts from the text. For this we integrate the
concept extraction tool COCO-EX (Becker et al.,
2021a), which extracts meaningful concepts from
texts and maps them to concept nodes in CN, con-
sidering all surface forms.

Linking Concepts with Direct Relations. We
construct all possible pairs of concepts extracted
from S1 and S2 by taking the cross product cs×ct,
where cs is a concept from S1, and ct a concept
from S2 (Fig. 1, Step 2, left). We then apply
COREC-LM trained on CN-13+RANDOM with
a tuned threshold of 0.9 for predicting which rela-
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tion ri ∈ RCN13 holds between the concept pairs,
or whether no relation holds (RANDOM) (cf. Fig.
1, Step 3 (left) for examples).

Linking Concepts with Multihop Paths.
COMET requires as input a source concept and
a relation. For each concept pair cs, ct we build
such inputs by combining cs with each relation ri
∈ RCN13, yielding 13 pairs cs, ri which we input
for target prediction (Step 2, right). To discover
relation chains starting from S2, we apply the same
process to ct, using cs as target concept. We also
include inverse relations, which gives us greater
flexibility for connecting entities, i.e., paths are al-
lowed to contain inverted triplets (e.g. baking←
USEDFOR← oven→ ATLOCATION→ kitchen).
To this end, we switch the order of concept pairs
within a given relation ri, relabel the relation as
r−1i , and add the inverted relation pair to COMET’s
training set.

Forward Chaining. For all pairs in the cross-
product cs × ct, for each input cs, ri and cs, r

−1
i

we generate the 10 most confident concepts cti
with COMET (beamsize 10) trained on CN-13 in-
cluding inverse triples. We continue with all paths
where the generated concept cti has minimum co-
sine distance of 0.7 to the respective target concept
ct. We generate the next hop by using each cti as
a new source concept, combine it with each of the
13 original and inverse relations, generate novel
target predictions, and again compare to the tar-
get concept. This similarity comparison guides
the forward chaining process towards the chosen
target concepts and helps detecting contextually
relevant paths. We use ConceptNet numberbatch
embeddings for the encoding of concepts; for mul-
tiword concepts we average the embeddings of all
non-stopwords.

Terminating Paths. We terminate path genera-
tion as soon as the similarity between cti and ct is
higher than 0.95 – here we expect the two concepts
to express the same meaning. We restrict the path
length to 3 hops and consider only completed paths
for evaluation (Step 3, right in Fig. 1).

Combining Approaches. With our framework
CO-NNECT we leverage the potential of the com-
plementarity of the two model types by combining
COREC-LM and COMET in a straightforward way.
Our hypothesis is that a system that admits both sin-
gle and multihop connections for establishing links
between concepts offers the greatest flexibility. We
further hypothesize that direct relations should be

preferred over indirect multihop paths, since the
latter could include irrelevant or misleading inter-
mediate nodes. Thus, we discard all multihop paths
for each concept pair for which COREC-LM pre-
dicted a direct connection (Fig. 1, Step 4, pair 4).
If COMET and COREC-LM produce a singlehop
path, we also prefer COREC-LM’s prediction, re-
lying on the model’s high precision (pair 1 in Step
4). We keep the paths generated by COMET for
concept pairs for which no direct relation could be
established (i.e., COREC-LM predicted RANDOM

or no prediction above its threshold, pair 3&6), as-
suming that in such cases intermediate concepts are
required to establish a link. If only one of the mod-
els establishes a link, we keep this connection (pair
2), and if none of the models finds a link, we as-
sume that the concepts are not (closely) connected
(pair 5).

3.3 Static Baseline Model

We compare COREC-LM and COMET against the
model of Paul and Frank (2019) that uses Concept-
Net as a static KG. The system extracts paths be-
tween pairs of concepts from sentence pairs, hence
conforms well to our setting. Following Paul and
Frank (2019), starting from concepts in a sentence
pair (§3.2), we construct a subgraph G′ = (V ′, E′)
of the ConceptNet graph, where V ′ comprises all
concepts ci in 〈S1, S2〉. The system then finds all
shortest paths p′ from ConceptNet that connect any
concept pairs in V ′, and includes them in G′. It
then includes, for any concepts in G′, all directly
connected concepts from ConceptNet together with
their edges. This yields a small sub-graph from
ConceptNet that contains concepts and relations
relevant for capturing conceptual links across the
sentence pair. To select relevant paths, G′ is filtered
by computing scores for vertices and paths using
PageRank and Closeness Centrality score, and we
constrain path lengths to 3 hops.

4 Revealing Implicit Knowledge through
Knowledge Paths: Experiments and
Evaluation

In this section we evaluate the paths generated by
our proposed models. We first present our datasets
and statistics on established connections (§4.1),
and then evaluate the quality of the paths manu-
ally (§4.2) and automatically (§4.3).
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Figure 2: Example generations from our three model types (first three instances from IKAT, last two from ARC).

4.1 Datasets and Statistics

The IKAT dataset (Becker et al., 2020) is based
on the English Microtexts Corpus of short argu-
mentative texts (Peldszus and Stede, 2016). For all
sentence pairs that are adjacent or argumentatively
related, annotators added the implicit knowledge
that connects them, using short sentences. IKAT
contains 719 such sentence pairs, from which we
extracted 60,294 concept pairs. The ARC dataset
(Habernal et al., 2018) contains arguments taken
from online discussions in English, consisting of
a claim and a premise, and an annotated implicit
warrant that explains why the claim follows from
the premise. We evaluate our models on the ARC
test set that comprises 444 argument pairs, from
which we extracted 21,898 concept pairs; and the
corresponding warrants.

Example generations for both datasets from
our three model types – COREC-LM, COREC,
and ranked CN-graphs – appear in Fig. 2, where
the first three sentence pairs come from IKAT, and
the last two from ARC.

Number of links and hops. Table 1 gives statis-
tics of the paths generated between concepts from
sentence pairs from IKAT and ARC using our dif-
ferent models. We find that COREC-LM finds rela-
tions between around 22k from 66k concept pairs
in IKAT, while COMET only generates paths be-
tween 3,660 pairs. This can be explained by the
very high similarity threshold we imposed for guid-
ing the forward chaining process towards the target
concept, since our motivation was not to gener-
ate as many paths as possible, but paths that are
meaningful and contextually relevant. When com-
bining paths from COMET and COREC-LM, we
find links for more than 24k concept pairs in IKAT.
The highest number of links is established by rank-
ing CN-subgraphs (50k linked concept pairs). For

ARC, which contains 22k concept pairs, COREC-
LM finds links between around 10k and COMET
around 2k concept pairs, while almost 15k pairs
can be connected using ranked CN-graphs. In both
datasets, the ranked CN-graphs contain on average
2.1 hops (relations) per path, while the paths gen-
erated by COMET are shorter (1.4 on IKAT/1.5 on
ARC). In fact, COMET establishes many direct re-
lations (69% of all paths are single hops), whereas
the ranked CN-graphs are mostly two- (49%) or
three-hop paths (37%).

Replacing Vague Relations in CN-Graphs.
We find that in contrast to COREC-LM and
COMET, the ranked CN-graphs are constructed
using mostly the very general relation RELAT-
EDTO (71%/IKAT; 72%/ARC), followed by the
likewise vague relation HASCONTEXT (8% in both
datasets).5 For determining the impact of vague
relations on path quality, we replace all RELAT-
EDTO and HASCONTEXT relations in the ranked
CN-graphs with relations predicted by COREC-
LM (trained on CN-13, threshold 0.9). For IKAT,
we replace 43.4% of all RELATEDTO and 46.2%
of all HASCONTEXT instances, in ARC we replace
70.7% of all RELATEDTO and 37% of all HAS-
CONTEXT relations. We use this version when
evaluating paths, in addition to the original ranked
CN-graphs.

4.2 Manual Evaluation of Path Quality
Our statistics showed that most links between con-
cepts can be revealed using knowledge paths re-
trieved from ConceptNet as a static KG, whereby
these paths tend to contain multiple hops and a
high amount of vague relations. Fewer links are
established using the dynamic models COREC-LM
and COMET, which produce shorter paths using

5For details on relation distributions cf. Appendix.
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COR COM CONN CN
IKAT linked pairs 21,934 3,660 24,063 50,003

avg. hops 1 1.4 1.1 2.1

ARC linked pairs 9,844 1,826 10,828 14,940
avg. hops 1 1.5 1.1 2.1

Table 1: Statistics of paths generated by COREC-LM,
COMET, their combination (CO-NNECT), and ranking
CN-graphs (CN): number of concepts pairs between
which a link was found, and average number of hops
per path.

only specific relation types from CN-13. Since our
aim is to construct high-quality, meaningful knowl-
edge paths that help to explain implicit information
(rather than establishing as many links as possi-
ble), we now examine the quality and relevance of
the knowledge paths. We set up an annotation ex-
periment, providing annotators with 100 sentence
pairs from each dataset, with marked concepts (one
from S1 and one from S2) and the path gener-
ated between these concepts by (i) COREC-LM,
(ii) COMET, (iii) ranked paths from CN, and (iv)
ranked paths with replaced vague relations (CN-r).

Annotation Setup. For each sentence pair,
our annotators evaluated if 1) the path is a
meaningful and relevant explanation for the con-
nection between the two sentences (very rele-
vant/relevant/neutral/not relevant/misleading); if
2) the path represents implicit information not ex-
plicitly expressed in the sentences (yes/no); and 3)
which model generates the path that is most helpful
and expressive for understanding the connection
between the sentences. 4) To evaluate the combina-
tion of COREC-LM and COMET in CO-NNECT,
we generate a subset for each dataset that includes
all sentence/concept pairs for which COREC-LM
predicted a singlehop path and COMET generated
a multihop path (10 pairs per subset). For these
instances we ask in addition whether the multihop
paths include unrelated, unnecessary or uninforma-
tive intermediate nodes (yes/no), misleading inter-
mediate nodes (yes/no); or intermediate nodes that
are important for explaining the connection and
missing in the direct relation predicted by COREC-
LM (yes/no).6 Annotations were performed by
two annotators with a linguistic background. We
measure IAA using Cohen’s Kappa and achieve
an agreement of 81%. Remaining conflicts were

6The annotation manual together with example anno-
tations can be found here: https://github.com/
Heidelberg-NLP/CO-NNECT/blob/main/manual.
pdf

IKAT ARC
COR COM CN CN-r COR COM CN CN-r

Predictions 74 64 88 88 78 60 76 76
Relev. +2 70 50 36 40 63 49 30 34

+1 19 27 22 24 25 28 28 32
0 8 18 27 21 8 9 29 22
-1 3 5 10 10 2 6 4 3
-2 0 0 5 5 2 8 9 9

Impl. yes 80 78 57 67 87 81 57 62
Knowl. no 20 22 43 33 13 19 43 38
Best Link 65 64 28 34 76 70 7 14

Table 2: Manual evaluation of paths from COREC-LM,
COMET, ranked CN-graphs (CN), and CN-graphs with re-
placed vague relations (CN-r); all numbers in %.: How many
concept pairs could be linked (line 1), are the links relevant
and meaningful (2-6), do the links represent implicit knowl-
edge (7-8), how often a link was chosen to be most helpful for
understanding the connection (9).

resolved by an expert annotator.
Results. Table 2 shows the results of our an-

notation experiment. On IKAT, 89% of the paths
established by COREC-LM and 77% of the rela-
tions predicted by COMET were annotated as very
relevant (+2) or relevant connections (+1), which
only applies for 58% of the ranked CN-paths. 15%
of the ranked CN-paths were annotated as not rele-
vant (-1) or misleading (-2), which can be explained
by noisy intermediate nodes; and 27% as vague (0),
which can be explained by the large amount of un-
specific relations. When replacing RELATEDTO

and HASCONTEXT (CN-r), the amount of paths an-
notated as vague slightly decreases, and the amount
of paths labelled as relevant and very relevant in-
creases.

Moreover, paths generated by COREC-LM and
COMET were found to yield better implicit knowl-
edge representations than ranked CN-paths (line
8-9, Table 2), while we find that replacing vague
relations in the CN-paths improves their ability of
representing implicit knowledge. Finally, 65% of
relations predicted by COREC-LM and 64% of
paths generated by COMET were chosen as ex-
plaining the connections between sentences best,
which is only the case for 28% of the CN-paths,
and slightly better for the replaced version of the
CN-paths (34%).

On ARC, the high amount of CN-paths anno-
tated as vague (29%) again indicates uninforma-
tive connections and can be reduced when replac-
ing vague with more specific relations. Relations
predicted by COREC-LM were found to be less
relevant for connecting sentences in ARC than in
IKAT, but 87% of them were evaluated as appropri-
ate expressions of implicit knowledge. 76% of the

https://github.com/Heidelberg-NLP/CO-NNECT/blob/main/manual.pdf
https://github.com/Heidelberg-NLP/CO-NNECT/blob/main/manual.pdf
https://github.com/Heidelberg-NLP/CO-NNECT/blob/main/manual.pdf
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relations predicted by COREC-LM were evaluated
as best connections, which applies only for 7% of
CN-paths and 14% of CN-paths with replaced re-
lations. For COMET we find overall comparable
results between IKAT and ARC.

Regarding the combination of COREC-LM and
COMET addressed with question 4, according to
our annotators 50% of the multihop paths in the
IKAT subset include misleading nodes and all of
them include irrelevant or uninformative nodes.
Still, compared against the direct relations pre-
dicted by COREC-LM, annotators state for 30% of
the multihop paths from COMET that they contain
intermediate concepts that are important for ex-
plaining the connection. On the ARC subset, 40%
of the multihop paths include misleading and 60%
include irrelevant nodes, and only 20% contain
important intermediate concepts that are missing
in the direct relation. For each subset, annotators
preferred the shorter path over the multihop path
in 90% of the given sentence pairs. Comparing
singlehop paths generated by COMET to direct
relations predicted by COREC-LM for the same
concept pairs, our annotators preferred the relation
predicted by COREC-LM in 64% of the cases, in
29% the link was annotated as equally good, and
only in 7% COMET’s generation was preferred.

To summarize, according to our manual evalu-
ation, the dynamic models COMET and COREC-
LM are better suited for generating meaningful
knowledge paths that express implicit knowledge
between sentences than ranked paths from the static
CN knowledge graph, even though replacing vague
by more specific relations slightly improves results.
When comparing multihop paths to direct relations
established between the same concept pairs, we
find that longer paths tend to contain irrelevant or
even misleading nodes, and that direct relations
are preferred by human annotators. These findings
support our proposed joint framework CO-NNECT,
which gives preference to direct relations and uti-
lizes multihop paths only if no direct connection
between concepts can be revealed.

4.3 Automatic Evaluation Against Gold

Our goal is to generate meaningful paths that con-
vey implicit knowledge between sentences. In our
automatic evaluation we compare the set of model-
generated paths between all concept pairs from two
related sentences to the implicit knowledge anno-
tated in IKAT and ARC for these sentences, using

similarity metrics.

Since the generated relation and path represen-
tations differ from the annotated natural sentences,
we approximate a common representation as fol-
lows: We encode the golden annotations of im-
plicit knowledge – usually short sentences – using
three settings: (i) Silver Paths: we encode their re-
lational knowledge, by extracting all concepts from
each golden implicit knowledge sentence (My dog
has a bone→ dog, bone) using the CN-extraction
tool COCO-EX (Becker et al., 2021a), and pre-
dict the relations between them using COREC-LM,
trained on CN-13 (dog, HASA, bone). If a sentence
contains more than two relations, we concatenate
the predicted relation triples. (ii) IKAT provides
manual annotations of ConceptNet relations for the
golden implicit knowledge sentences, which we
use as Gold Paths (The tree is in the garden →
tree ATLOCATION garden). (iii) Gold-NL: Here
we use the implicit knowledge (in natural language)
as provided in the datasets: IKAT’s implicit knowl-
edge sentences and ARC’s implicit warrants.

For encoding the generated paths we apply
two settings: (i) we concatenate all concepts and
relations within the paths; (Generated Paths) and
(ii) we translate the relation triples and paths to
(pseudo) natural language using templates provided
by ConceptNet (e.g. cs CAUSES ct→ The effect of
cs is ct; Generated Paths-NL).

We apply two automatic similarity metrics,
comparing (a) Generated vs. Silver Paths, (b) Gen-
erated Paths-NL vs. Gold-NL, and (c) Generated vs.
Gold Paths (only IKAT). (i) We encode each rep-
resentation as described above using ConceptNet
numberbatch embeddings (Speer et al., 2017) (for
multiword concepts we average the embeddings
of all non-stopwords), and compute cosine simi-
larity between them, and (ii) we use BERTScore
F1 (Zhang et al., 2020) to compare representations,
which computes string similarity using contextual-
ized embeddings. Both metrics lie in [−1, 1].

Results. Table 3 shows that the paths gen-
erated by combining COREC-LM and COMET
in our framework CO-NNECT achieve the high-
est similarity scores according to Numberbatch-
Cosim on IKAT in setting (a) and (b), while for
(c) we get the highest Cosim scores for ranked CN-
graphs with replaced vague relations. According
to BERTScore, either COREC-LM (setting a) or
COMET (setting b) applied separately, or both ap-
plied in combination (setting c) achieve highest
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COR COM CONN CN CN-r
(a) Generated Paths vs. Silver Paths

IKAT .61/.85 .54/.82 .62/.84 .57/.78 .58/.80
ARC .41/.84 .39/.82 .42/.86 .40/.77 .40/.78

(b) Generated Paths-NL vs. Gold-NL
IKAT .69/.81 .65/.83 .70/.81 .65/.75 .69/.76
ARC .72/.81 .66/.82 .72/.81 .71/.75 .77/.76

(c) Generated Paths vs. Gold Paths
IKAT .57/.78 .49/.78 .58/.79 .66/.73 .67/.74

Table 3: Comparing generated paths to implicit knowl-
edge annotations on IKAT and ARC, measured by
Cosim/BERTScore (F1).

results on IKAT. On ARC, CO-NNECT achieves
both highest Cosim and BERTScores in setting (a),
while in (b) we get the best scores for CN-r ac-
cording to Cosim, and the best scores for COMET
according to BERTScore.

Summarizing our insights from automatic eval-
uations, we find that COREC-LM achieves high
scores when applied separately or in combination
with COMET (CO-NNECT). COMET applied
in isolation does not yield the highest scores, but
helps to boost COREC-LM’s performance in the
joint CO-NNECT framework. Ranked CN-graphs
achieve highest Cosim in two settings/datasets
(ARC–b; IKAT–c), but we do not find significant
improvements when replacing vague relations in
CN-graphs (expect for Cosim in setting b). This
can be explained by the fact that even though
many RELATEDTO and HASCONTEXT instances
could be replaced, for both datasets a large amount
of vague relations still remain (56.6% of RELAT-
EDTO/53.2% of HASCONTEXT in IKAT; 29.3%
RELATEDTO/63% HASCONTEXT in ARC). There-
fore, the vague relation types in the CN-graphs
still remain problematic when representing implicit
knowledge.

When comparing our manual evaluation results
to the automatic scores, we find that the genera-
tions that were manually evaluated as most relevant
and meaningful explanations of implicit knowledge
are not always highest-ranked by automatic metrics,
which points to two limitations of our automatic
evaluation: Besides well-known issues regarding
the reliability, interpretability, and biases of auto-
matic metrics (Callison-Burch et al., 2006), we
evaluate the generated paths against an annotated
reference – paths or sentences – which is often only
one among several valid options for expressing the
implicit knowledge (cf. Becker et al. 2017). This
means that a generated path may still be a relevant

explicitation of implicit information, even if not
similar to the reference. Hence, automatic scores
are to be considered with caution.

5 Conclusion

Our work aims to leverage commonsense knowl-
edge in the form of single and multihop paths, to
establish knowledge connections between concepts
from different sentences, as a form of explicitation
of implicitly conveyed information. We combine
existing relation classification and target predic-
tion models in a dynamic knowledge prediction
framework, CO-NNECT, utilizing language models
finetuned on knowledge relations from Concept-
Net. We compare against a path ranking system
that employs static knowledge from ConceptNet as
a baseline and evaluate the quality of the obtained
paths (i) through manual evaluation and (ii) using
automatic similarity metrics, by comparing gener-
ated paths to annotations of implicit knowledge in
two argumentative datasets. Our evaluations show
that we obtain the highest number of connections
from the static ConceptNet graph, however, they
are often noisy due to unrelated intermediate nodes,
and – even after replacements – still contain many
unspecific relations. Our framework CO-NNECT,
instead, combines relation classification and target
prediction, leveraging the high precision of the for-
mer, and the ability to perform forward chaining
of the latter, and obtain high-quality, meaningful
and relevant knowledge paths that reveal implicit
knowledge conveyed by the text, as shown in a
profound manual evaluation experiment.

We believe that CO-NNECT is a useful frame-
work which can be applied for different tasks,
such as enriching texts with commonsense knowl-
edge relations and paths, for dynamically enriching
knowledge bases, or for building knowledge con-
straints for language generation. In Becker et al.
(2021b) for example we inject single- and multi-
hop commonsense knowledge paths predicted by
CO-NNECT as constraints into language models
and show that this improves the model’s ability of
generating sentences that explicate implicit knowl-
edge which connects sentences in texts. We fur-
thermore believe that the paths established with
CO-NNECT, which can provide explicitations of
implicit knowledge, can be useful to enhance many
other NLP downstream tasks, such as argument
classification, stance detection, or commonsense
reasoning.
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APPENDIX

A Constructing the RANDOM Class for
Training COREC-LM in an Open World
Setting

Our downstream application task – finding connec-
tions between concepts – requires that our relation
classifier also learns to detect that no direct relation
holds between a given pair of concepts. We thus
extend the data for training and testing COREC-
LM with a RANDOM class which contains concept
pairs that are not related which we add to CN-100k
and CN-13 Instances for this class are generated
similarly to Vylomova et al. (2016): 50% of them
are opposite pairs which we obtain by switching the
order of concept pairs within the same relation, and
50% are corrupt pairs, obtained by replacing one
concept in a pair with a random concept from the
same relation. Corrupt pairs ensure that COREC-
LM learns to encode relation instances rather than
simply learning properties of the word classes. We
add these instances (2070 for training and 260 for
development and testing, respectively) to CN-100k
and CN-13 when training and evaluating in an open
world setting.
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COREC-LM COMET CONNECT CN Subgraphs
IKAT ATLOCATION(25%) ISA(19%) ATLOCATION(22%) RELATEDTO(71%)

HASPROPERTY(20%) HASA(18%) ISA(17%) HASCONTEXT(8%)
ISA(17%) CAUSES(17%) HASPROPERTY(16%) IsA(7%)

ARC ATLOCATION(31%) ATLOCATION(22%) ATLOCATION(27%) RELATEDTO(72%)
ISA(18%) CAUSES(20%) ISA(15%) HASCONTEXT(8%)
HASPROPERTY(14%) HASA(18%) HASPROPERTY(10%) ISA(7%)

Table 4: Most frequently used relations when constructing single and multihop knowledge paths using COMET,
COREC-LM, their combination, and ranked subgraphs from CN.

B Relations Used for Constructing Single- and
Multihop Paths
Table 4 lists the three most frequently used relations
when constructing single and multihop knowledge
paths using COMET, COREC-LM, their combi-
nation, and ranked subgraphs, respectively for the
two datasets IKAT and ARC. The top three rela-
tions used by COREC-LM within both datasets
are ATLOCATION, HASPROPERTY, and ISA. In-
terestingly, besides ISA and HASA, COMET fre-
quently uses the only causal relation in the CN
inventory CAUSES. In contrast to COREC-LM and
COMET, the ranked CN-graphs are constructed us-
ing mostly the very general relation RELATEDTO,
followed by the likewise vague relation HASCON-
TEXT. When excluding paths that contain RELAT-
EDTO, only 2,551 connected concept pairs remain
in IKAT and 6,858 in ARC.


