
TTT: A tree transduction language for syntactic and semantic processing

Abstract

In this paper we present the tree to tree
transduction language, TTT. We moti-
vate the overall ”template-to-template” ap-
proach to the design of the language, and
outline its constructs, also providing some
examples. We then show that TTT allows
transparent formalization of rules for parse
tree refinement, parse correction, predicate
disambiguation, and refinement, inference,
and verbalization of logical forms.

1 Introduction

Pattern matching and pattern-driven transforma-
tions are fundamental tools in AI. Many symbol
manipulation tasks including operations on parse
trees and logical forms, and even inference and as-
pects of dialogue and translation can be couched
in the framework of pattern-directed transduction
applied to list-structured symbolic expressions or
trees.

The TTT system is directly applicable to con-
cise and transparent specification of rules for such
tasks, in particular (as we will show), parse tree
refinement, parse tree correction, predicate dis-
ambiguation, logical form refinement, inference,
and verbalization into English.

In parse tree refinement, our particular focus
has been on repair of malformed parses of image
captions, as obtained by the Charniak-Johnson
parser (Charniak and Johnson, 2005). This has
encompassed such tasks as distinguishing pas-
sive participles from past participles and temporal
nominals from non-temporal ones, assimilation
of verb particles into single constituents, delet-
ing empty constituents, and particularizing prepo-
sitions. For example, standard treebank parses

tag both past participles (as in “has written”) and
passive participles (as in “was written”) as VBN.
This is undesirable for subsequent compositional
interpretation, as the meanings of past and pas-
sive participles are distinct. We can easily relabel
the past participles as VBEN by looking for parse
tree subexpressions where a VBN is preceded by a
form of “have”, either immediately or with an in-
tervening adverb or adverbial, and replacing VBN
by VBEN in such subexpressions. Of course this
can be accomplished in a standard symbol manip-
ulation language like Lisp, but the requisite multi-
ple lines of code obscure the simple nature of the
transduction.

We have also been able to repair systematic PP
(prepositional phrase) misattachments, at least in
the limited domain of image captions. For ex-
ample, a common error is attachment of a PP to
the last conjunct of a conjunction, where instead
the entire conjunction should be modified by the
PP. Thus when a statistically obtained parse of
the sentence “ Tanya and Grandma Lillian at her
highschool graduation party” brackets as “Tanya
and (Grandma Lillian (at her highschool gradu-
ation party.))”, we want to lift the PP so that “at
her highschool graduation party” modifies “Tanya
and Grandma Lillian”.

Another systematic error is faulty classification
of relative pronouns/determiners as wh-question
pronouns/determiners, e.g., “the student whose
mother contacted you” vs. “I know whose mother
contacted you” – an important distinction in com-
positional semantics. (Note that only the first oc-
currence, i.e., the relative determiner, can be para-
phrased as with the property that his, and only the
second occurrence, in which whose forms a wh-
nominal, can be paraphrased as the person with



the property that his.) An important point here is
that detecting the relative-determiner status of a
wh-word like whose may require taking account
of an arbitrarily deep context. For example, in
the phrase “the student in front of whose par-
ents you are standing”, whose lies two levels of
phrasal structure below the nominal it is seman-
tically bound to. Such phenomena motivate the
devices in TTT for detecting “vertical patterns”
of arbitrary depth. Furthermore, we need to be
able to make local changes “on the fly” in match-
ing vertical patterns, because the full set of tree
fragments flanking a vertical match cannot in gen-
eral be saved using match variables. In the case
of a wh-word that is to be re-tagged as a relative
word, we need to rewrite it at the point where
the vertical pattern matches it, rather than in a
separate tree-(re)construction phase following the
tree-matching phase. .

An example of a discourse phenomenon that
requires vertical matching is anaphoric referent
determination. In particular, consider the well-
known rule that a viable referent for an anaphoric
pronoun is an NP that C-commands it, i.e., that is
a (usually left) sibling of an ancestor of the pro-
noun. For example, in the sentence “John shows
Lillian the snowman that he built”, the NP for
John C-commands the pronominal NP for he, and
thus is a viable referent for it (modulo gender and
number agreement). We will later show a sim-
ple TTT rule that tags such an anaphoric pronoun
with the indices of its C-commanding NP nodes,
thus setting the stage for semantic interpretation.

We have been also able to perform Skolemiza-
tion, conjunct separation, simple inference, and
logical form verbalization with TTT and suspect
its utility to logic tasks will increase as develop-
ment continues.

A beta version of our system will be made
available; however the URL is not included in this
paper for anonymity.

2 Related Work

There are several pattern matching facilities avail-
able; however, none proved sufficiently general
and perspicuous to serve our various purposes.

The three related tools Tgrep, Tregex, and
Tsurgeon provide powerful tree matching and re-
structuring capabilities (Levy and Andrew, 2006).
However, Tgrep and Tregex provide no transduc-
tion mechanism, and Tsurgeon’s modifications

are limited to local transformations on trees. Also,
it presupposes list structures that begin with an
atom (as in Treebank trees, but not in parse trees
with explicit phrasal features), and its patterns are
fundamentally tree traversal patterns rather than
tree templates, and can be quite hard to read.

Peter Norvig’s pattern matching language,
“pat-match”, from (?) provides a nice pattern
matching facility within the Lisp environment, al-
lowing for explicit templates with variables (that
can bind subexpressions or sequences of them),
and including ways to apply arbitrary tests to ex-
pressions and to match boolean combinations of
patterns. However, there is no provision for “ver-
tical” pattern matching or subexpression replace-
ment “on the fly”. TTT supports both horizon-
tal and vertical pattern matching, and both global
(output template) and local (on the fly) tree trans-
duction. Also the notation for alternatives, along
with exclusions, is more concise than in Norvig’s
matcher, for instance not requiring explicit ORs.
While pat-match supports matching multi-level
structures, the pattern operators are not compos-
able – a feature present in TTT that we have found
to be quite useful.

Mathematica also allows for sophisticated pat-
tern matching, including matching of sequences
and trees. It also includes a sophisticated expres-
sion rewriting system, which is capable of rewrit-
ing sequences of expressions. It includes func-
tions to apply patterns to arbitrary subtrees of a
tree until all matches have been found or some
threshold count is reached; as well, it can return
all possible ways of applying a set of rules to an
expression. However, as in the case of Norvig’s
matcher there is no provision for vertical patterns
or on-the-fly transduction. (Wolfram Research,
Inc, 2010)

Snobol, originally developed in the 1960’s, is
a language focused on string patterns and string
transformations (Griswold, 1971). It has a no-
tably different flavor to the other transformation
systems. Its concepts of cursor and needle sup-
port pattern based transformations that rely on the
current position in a string at pattern matching
time, as well as the strings that the preceding pat-
terns matched up to the current point. Snobol
also supports named and thereby recursive pat-
terns. While it includes recognition of balanced
parenthesis, the expected data type for Snobol is
the string – leaving it a less than direct tool for



intricate manipulation of trees. An Python exten-
sion SnoPy adds Snobol’s pattern matching capa-
bilities to Python. (Rozenberg, 2002)

Haskell also includes a pattern matching sys-
tem, but it is weaker than the other systems men-
tioned. The patterns are restricted to function
arguments, and are not nearly as expressive as
Mathematica’s for trees nor Peter Norvig’s system
or Snobol for strings. (Hudak et. al, 2000)

3 TTT

Pattern Matching

Patterns in TTT are hierarchically composed of
sub-patterns. The simplest kind of pattern is an
arbitrary, explicit list structure (tree) containing
no match operators, and this will match only an
identical list structure. Slightly more flexible pat-
terns are enabled by the “underscore operators”
!, +, ?, *. These match any single tree, any

non-empty sequence of trees, the empty sequence
or a sequence of one tree, and any (empty or non-
empty) sequence of trees. These operators (as
well as all others) can also be thought of as match
variables, as they pick up the tree or sequence of
trees they match as their binding.

The bindings are “non-sticky”, i.e., an operator
such as ! will match any tree, causing replace-
ment of any prior binding (within the same pat-
tern) by that tree. However, bindings can be pre-
served in two ways: by use of new variable names,
or by use of sticky variables. New variable names
are obtained by appending additional characters
– conventionally, digits – to the basic ones, e.g.,
!1, !2, etc. Sticky variables are written with a

dot, i.e., !., +., ?., *., where again these
symbols may be followed by additional digits or
other characters. The important point concern-
ing sticky variables is that multiple occurrences of
such a variable in a pattern can only be bound by
the same unique value. Transductions are spec-
ified by a special pattern operator / and will be
described in the next section.

More flexible operators, allowing for alter-
natives, negation, and vertical patterns among
other constructs, are written as a list headed
by an operator without an underscore, followed
by one or more arguments. For example, (!
A (B C)) will match either the symbol A or
the list (B C), i.e., the two arguments provide
alternatives. As an example involving nega-

tion, (+ A (B !) ∼ (B B)) will match
any nonempty sequence whose elements are As or
two-element lists headed by B, but disallowing el-
ements of type (B B). Successful matches cause
the matched expression or sequence of expres-
sions to become the value of the operator. Again,
sticky versions of match operators use a dot, and
the operators may be extended by appending dig-
its or other characters.

The ten basic argument-taking pattern opera-
tors are:

• ! - Match exactly one sub-pattern argument.

• + - Match a sequence of one or more argu-
ments.

• ? - Match the empty sequence or one argu-
ment.

• * - Match the empty sequence or one or more
arguments.

• {} - Match any permutation of the argu-
ments.

• <> - Match the freestanding sequence of the
arguments.

• ˆ - Match a tree that has a child matching
one of the arguments.

• ˆ* - Match a tree that has a descendant
matching one of the arguments.

• ˆ@ - Match a vertical path.

• / - Attempt a transduction. (Explained later.)

Various examples will be provided below. Any
of the arguments to a pattern operator may be
composed of arbitrary patterns.

Negation: The operators !, +, ?, *, and ˆ sup-
port negation (pattern exclusion); i.e., the argu-
ments of these operators may include not only al-
ternatives, but also a negation sign ∼ (after the
alternatives) that is immediately followed by one
or more precluded patterns. If no alternatives
are provided, only precluded patterns, this is in-
terpreted as “anything goes”, except for the pre-
cluded patterns. For example, (+ ∼ (A A)
(B B)) will match any nonempty sequence of
expressions that contains no elements of type (A
A) or (B B).



Conjunction: We have so far found no com-
pelling need for an explicit conjunction operator.
Of course, any pattern calling for a structured tree
is by its nature conjunctive – all the tree compo-
nents called for must be present. If necessary, a
way to say that a tree must match each of two or
more patterns is to use double negation. For ex-
ample, suppose we want to say that an expression
must begin with an A or B but must contain an A
(at the top level); this could be expressed as
(! ∼ (! ∼ ((! A B) *) ( * A *))).

However, this would be more perspicuously ex-
pressed in terms of alternatives, i.e.,
(! (A *) (B * A *)). We also note that
the allowance for computable predicates (dis-
cussed below) enables introduction of a simple
construct like
(! (and? patt1 patt2)),
where patt1 and patt2 are arbitrary TTT pat-
terns, and and? is an executable predicate that
applies the TTT matcher to its arguments and re-
turns a non-nil value if both succeed and nil other-
wise. In the former case, the binding of the outer
! will become the matched tree.

Bounded Iteration: The operators !, +, ?,
*, and ˆ also support iterative bounding, using
square brackets. This enables one to write pat-
terns that match exactly n, at least n, at most n,
or from n to m times, where n and m are inte-
gers. Eg. (![3] A) would match the sequence
A A A. The vertical operator [̂n] matches trees
with a depth n descendant that matches one of the
operator’s arguments.

Vertical Paths: The operators ˆ* and ˆ@ en-
able matching of vertical paths of arbitrary depth.
The first, as indicated, requires the existence of
a descendant of the specified type, while the sec-
ond, with arguments such as (ˆ@ P1 P2 ...
Pn) matches a tree whose root matches P1, and
has a child matching P2, which in turn has a child
matching P3, and so on. Note that this basic form
is indifferent to the point of attachment of each
successive offspring to its parent; but we can also
specify a point of attachment in any of the P1, P2,
etc., by writing @ for one of its children. Note that
the argument sequence P1 P2 ... can itself be
specified as a pattern (e.g., via (+ ...)), and in
this case there is no advance commitment to the
depth of the tree being matched.

Computable Predicates: Arbitrary predicates
can be used during the pattern matching pro-

cess (and consequently the transduction process).
Symbols with names ending in the question mark,
and with associated function definitions, are inter-
preted as predicates. When a predicate is encoun-
tered during pattern matching, it is called with the
current subtree as input. The result is only in-
spected as far as nil/non-nil, and when nil is re-
turned the current match fails. Addionally, sup-
porting user-defined predicates enables the use of
named patterns.

Some Example Patterns: Here are examples
of particular patterns, with verbal explanations.
Also see Table 1, at the top of the next page, for
additional patterns with example bindings.

• (! (+ A) (+ B))
Matches a non-empty sequence of A’s or a
non-empty sequence of B’s, but not a se-
quence containing both.

• (* (<> A A))
Matches an even number of A’s.

• (B (* (<> B B)))
Matches an odd number of B’s.

• (({} A B C))
Matches (A B C), (A C B), (B A C),
(B C A), (C A B) and (C B A) and
nothing else.

• ((<> A B C))
Matches (A B C) and nothing else.

• (ˆ* X)
Matches any tree that has descendant X.

• (ˆ@ (+ (@ *)) X)
Matches any tree with leftmost leaf X.

Transductions

Transductions are specified with the transduction
operator, /, which takes two arguments. The left
argument may be any tree pattern and the right
argument may be constructed of literals, variables
from the lhs pattern, and function calls.

Transductions may be applied to the roots of
trees or arbitrary subtrees, and they may be re-
stricted to apply at most once, or until conver-
gence. When applying transductions to arbitrary
subtrees, trees are searched top-down, left to right.
When a match to the transduction lhs pattern oc-
curs, the resulting bindings and transduction rhs



Pattern Tree Bindings
! (A B C) ( ! (A B C)
(A ! C) (A B C) ( ! B)
( * F) (A B (C D E) F) ( * A B (C D E))
(A B ? F) (A B (C D E) F) ( ? (C D E))
(A B ? (C D E) F) (A B (C D E) F) ( ? )
(ˆ@ ! (C *) E) (A B (C D E) F) (ˆ@ (A B (C D E) F)) ( * D E)
(A B (<> (C D E)) F) (A B (C D E) F) (<> (C D E))
(A B (<> C D E) F) (A B (C D E) F) nil

Table 1: Binding Examples

are used to create a new tree, that then replaces
the tree (or subtree) that matched the lhs.

Here are a few examples of simple template to
template transductions:

• (/ X Y)
Replaces the symbol X with the symbol Y.

• (/ (! X Y Z) (A))
Replaces any X, Y, or Z with A.

• (/ (! X) (! !))
Duplicates an X.

• (/ (X * Y) (X Y))
Remove all subtrees between X and Y.

• (/ ( ! * !1) ( !1 * !))
Swaps the subtrees on the boundaries.

A transduction operator may appear nested
within a composite pattern. The enclosing pattern
effectively restricts the context in which the trans-
duction will be applied, because only a match to
the entire pattern will trigger a transduction. In
this case, the transduction is applied at the lo-
cation in the tree where it matches. The rhs of
such a transduction is allowed to reference the
bindings of variables that appear in the enclos-
ing pattern. We call these local transductions, as
distinct from replacement of entire trees. Local
transductions are especially advantageous when
performing vertical path operations, allowing for
very concise specifications of local changes. For
example, the transduction

(ˆ@ (* ((! S SBAR) +))
(/ (WH !)

(REL-WH (WH !))))
wraps (REL-WH ...) around a (WH ...)
constituent occurring as a descendant of a ver-
tical succession of clausal (S or SBAR) con-
stituents. Applied to the tree (S (SBAR (WH

X) B) A), this yields the new tree (S (SBAR
(REL-WH (WH X)) B) A). Additional ex-
amples appear later (especially in the parse tree
refinement section).

TTT also supports constructive functions, with
bound variables as arguments, in the rhs tem-
plates, such as join-with-dash!, which con-
catenates all the bound symbols with interven-
ing dashes, and subst-new!, which will be
discussed later. One can imagine additional
functions, such as reverse!, l-shift!,
r-shift!, or any other function of a list of
nodes which may be useful to the application at
hand. Symbols with names ending in the excla-
mation mark are assumed to be associated with
function definitions, and when appearing as the
first element of a list are executed during out-
put template construction. To avoid writing many
near-redundant functions, we use the simple func-
tion apply! to apply arbitrary Lisp functions
during template construction.

Theoretical Properties

A good overview of the dimensions of variability
among formal tree transducers is given in (Knight,
2007). The main properties are restrictions on
the height of the tree fragments allowed in rules,
linearity, and whether the rules can delete arbi-
trary subtrees. Among the more popular and re-
cent ones, synchronous tree substitution gram-
mars (STSG), synchronous tree sequence substi-
tution grammars (STSSG), and multi bottom-up
tree transducers (MBOT) constrain their rules to
be linear and non-deleting, which is important for
efficient rule learning and transduction execution
(Chiang, 2004; Galley et. al, 2004; Yamada and
Knight, 2001; Zhang et. al, 2008; Maletti, 2010).

The language TTT does not have any such



restrictions, as it is intended as a general pro-
gramming aid, with a concise syntax for po-
tentially radical transformations, rather than a
model of particular classes of linguistic opera-
tions. Thus, for example, the 5-element pat-
tern (! ((* A) B) ((* A) C) ((* A)
D) ((* A) E) ((* A))) applied to the ex-
pression (A A A A A) rescans the latter 5
times, implying quadratic complexity. (Our cur-
rent implementation does not attempt regular ex-
pression reduction for efficient recognition.) With
the addition of the permutation operator {}, we
can force all permutations of certain patterns be
tried in an unsuccessful match (e.g., (({} (!
A B C) (! A B C) (! A B C))) ap-
plied to (C B E)), leading to exponential com-
plexity. (Again, our current implementation does
not attempt to optimize.) Also, allowance for re-
peated application of a set of rules to a tree, un-
til no further applications are possible, leads to
Turing equivalence. This of course is true even
if only the 4 underscore-operators are allowed:
We can simulate the successive transformations
of the configurations of a Turing machine with
string rewriting rules, which are easily expressed
in terms of those operators and /. Addition-
ally, pattern predicates and function application in
the right-hand sides of rules are features present
in TTT that are not included in the above for-
mal models. In themselves (even without iter-
ative rule application), these unrestricted predi-
cates and functions lead to Turing equivalence.

Nondeterminism and noncommutativity: In
general, given a set of transductions (or even a sin-
gle transduction) and an input tree there may be
several ways to apply the transductions, resulting
in different trees. This phenomenon comes from
three sources:

• Rule application order - transductions are not
in general commutative.

• Bindings - a pattern may have many sets of
consistent bindings to a tree (e.g., pattern
( * *1) can be bound to the tree (X Y
Z) in four distinct ways).

• Subtree search order - a single transduction
may be applicable to a tree in multiple lo-
cations (e.g., (/ ! X) could replace any
node of a tree, including the root, with a sin-
gle symbol).

Therefore some trees may have many reduced
forms with respect to a set of transductions (where
by reduced we mean a tree to which no trans-
ductions are applicable) and even more reachable
forms.

Our current implementation does not attempt to
enumerate possible transductions. Rather, for a
given tree and a list of transductions, each trans-
duction (in the order given) is applied in top-down
fashion at each feasible location (matching the
lhs), always using the first binding that results
from this depth-first, left-to-right (i.e., pre-order)
search. Our assumption is that the typical user has
a clear sense of the order in which transformations
are to be performed, and is working with rules that
do not interact in unexpected ways. For exam-
ple, consider the cases of PP misattachment men-
tioned earlier. In most cases, such misattachments
are disjoint (e.g., consider a caption reading “John
and Mary in front and David and Sue in the back”,
where both PPs may well have been attached to
the proper noun immediately to the left, instead
of to the appropriate conjunction). It is also pos-
sible for one rule application to change the context
of another, but this is not necessarily problematic.
For instance, suppose that in the sentence “John
drove the speaker to the airport in a hurry” the PP
“to the airport” has been misattached to the NP
for “the speaker” and that the PP “in a hurry” has
been misattached to the NP for “the airport”. Sup-
pose further that we have a repair rule that carries
a PP attached to an NP upward in the parse tree
until it reaches a VP node, reattaching the PP as a
child of that VP. (The repair rule might incorpo-
rate a computable predicate that detects a poor fit
between an NP and a PP that modifies it.) Then
the result will be the same regardless of the order
in which the two repairs are carried out. The dif-
ference is just that with a preorder discipline, the
second PP (“in a hurry”) will move upward by one
step less than if the order is reversed, because the
first rule application will have shortened the path
to the dominating VP by one step.

In future it may be worthwhile to implement
exhaustive exploration of all possible matches and
expression rewrites, as has been done in Mathe-
matica. In general this would call for lazy compu-
tation, since the set of rewrites may be an infinite
set.



4 Some linguistic examples

Parse Tree Refinement: First, here is a simple
transduction to delete nil constituents (i.e., empty
brackets), which sometimes occur in the Brown
corpus:
(/ ( * () *1) ( * *1))
To distinguish between past and passive

participles, we want to search for the verb have,
and change the participle token correspondingly,
as discussed earlier. The following two trans-
ductions are equivalent – the first is global and
the second is an example of a local or on-the-fly
transduction. For simplicity we consider only
the has form of have. Observe the more concise
form, and simpler variable specifications of the
second transduction.
(/
(VP * (VBZ HAS) *1 (VBN !) *2)
(VP * (VBZ HAS) *1 (VBEN !) *2))

(VP * (VBZ HAS) * ((/ VBN VBEN) !) *)

To distinguish temporal and non-temporal
nominals, we use a computable predicate to de-
tect temporal nouns, and then annotate the NP tag
accordingly. (One more time, we show global and
local variants.)
(/ (NP * nn-temporal?)

(NP-TIME * nn-temporal?))

((/ NP NP-TIME) * nn-temporal?)

Assimilation of verb particles into single con-
stituents is useful to semantic interpretation, and
is accomplished with the transduction:
(/ (VP (VB !1) ( (PRT (RP !2)) (NP *1)))

(VP (VB !1 !2) (NP *1)))

We often particularize PPs to show the
preposition involved, e.g., PP-OF, PP-FROM,
etc. Note that this transduction uses the
join-with-dash! function, which enables us
to avoid writing a separate transduction for each
preposition:
(/ (PP (IN !) *1)

((join-with-dash! PP !)

(IN !) *1)) – such a rule
transforms subtrees such as (PP (IN FROM))
by annotating the PP tag as (PP-FROM (IN
FROM).

As a final syntactic processing example (tran-
sitioning to discourse phenomena and semantics),
we illustrate the use of TTT in establishing poten-
tial coreferents licensed by C-command relations,
for the sentence mentioned earlier. We assume

that for reference purposes, NP nodes are deco-
rated with a SEM-INDEX feature (with an inte-
ger value), and pronominal NPs are in addition
decorated with a CANDIDATE-COREF feature,
whose value is a list of indices (initially empty).
Thus we have the following parse structure for the
sentence at issue (where for understandabilty of
the relatively complex parse tree we depart from
Treebank conventions not only in the use of some
explicit features but also in using linguistically
more conventional phrasal and part-of-speech cat-
egory names; R stands for relative clause):
(S ((NP SEM-INDEX 1) (NAME John))

(VP (V shows)
((NP SEM-INDEX 2) (NAME Lillian))
((NP SEM-INDEX 3) (DET the)
(N (N snowman)

(R (RELPRON that)
((S GAP NP)
((NP SEM-INDEX 4
CANDIDATE-COREF ())
(PRON he))
((VP GAP NP) (V built)
((NP SEM-INDEX 4)
(PRON *trace*)))))))))

Here is a TTT rule that adjoins the index of a
C-commanding NP node to the CANDIDATE-
COREF list of a C-commanded pronominal NP:

( *
((NP * SEM-INDEX !. *) +)

*
(ˆ* ((NP * CANDIDATE-COREF

(/ ! (adjoin! !. !))

*)
(PRON !)))

*)

The NP on the second line is the C-
commanding NP, and note that we are using a
sticky variable ‘ !.’ for its index, since we need
to use it later. (None of the other match variables
need to be sticky, and we reuse ‘ *’ and ‘ !’ mul-
tiple times.) The key to understanding the rule is
the constituent headed by ‘ˆ*’, which triggers a
search for a (right) sibling or descendant of a sib-
ling of the NP node that reaches an NP consisting
of a pronoun, and thus bearing the CANDIDATE-
COREF feature. This feature is replaced “on the
fly” by adjoining the index of the C-commanding
node (the value of ‘ !.’) to it. For the sample
tree, the result is the following (note the value
‘(1)’ of the CANDIDATE-COREF list):
(S ((NP SEM-INDEX 1) (NAME John))

(VP (V shows)
((NP SEM-INDEX 2) (NAME Lillian))
((NP SEM-INDEX 3) (DET the)
(N (N snowman)

(R (RELPRON that)
((S GAP NP)
((NP SEM-INDEX 4



CANDIDATE-COREF (1))
(PRON he))
((VP GAP NP) (V built)
((NP SEM-INDEX 4)
(PRON *trace*)))))))))

Of course, this does not yet incorporate num-
ber and gender checks, but while these could be
included, it is preferable to gather candidates and
heuristically pare them down later. Thus repeated
application of the rule would also add the index 2
(for Lillian) to CANDIDATE-COREF.

Working with Logical Forms

Skolemization:
We wrote the function subst-new! to

replace all occurrences of a free variable symbol
in an expression with a new one, consistently
labeled as such. (We assume that no variable oc-
curs both bound and free in the same expression.)
It uses a TTT transduction to accomplish this.
Skolemization of an existential formula of type
(some x R S), where x is a variable, R is a
restrictor formula and S is the nucleat scope, is
then performed via the transduction

(/ (some ! !1 !2)

(subst-new!

!

( !1 and.cc !2))).
For example, (some x (x politician.n)

(x honest.a)) becomes ((C1.skol

politician.n) and.cc (C1.skol

honest.a)).
Inference: We can use the following rule to ac-

complish simple default inferences such as that if
most things with property P have property Q, and
most things with property Q have property R,
then (in the absence of knowledge to the contrary)
many things with property P also have property
R. (Our logical forms use infix syntax for predica-
tion, i.e., the predicate follows the “subject” argu-
ment. Predicates can be lambda abstracts, and the
computable boolean function pred? checks for
arbitrary predicative constructs.)

(/ (_*
(most _!.1 (_!.1 (!.p pred?))

(_!.1 (!.q pred?)))
_*
(most _!.2 (_!.2 !.q)

(_!.2 (!.r pred?)))
_*)
(many _!.1 (_!.1 !.p)

(_!.1 !.r)))

For example, ((most x (x dog.n) (x
pet.n)) (most y (y pet.n) (x
friendly.a))) yields the default inference
(many (x dog.n) (x friendly.a)).

The assumption here is that the two most-
formulas are embedded in a list of formulas (se-
lected by the inference algorithm), and the three
occurrences of * allow for miscellaneous sur-
rounding formulas. (To allow for arbitrary order-
ing of formulas in the working set, we also pro-
vide a variant with the two most-formulas in re-
verse order.)

Predicate Disambiguation: The following
rules are applicable to patterns of predica-
tion such as ((det dog.n have.v (det
tail.n)), ((det bird.n have.v (det
nest.n)), and ((det man.n) have.v
(det accident.n)). (Think of det as
an unspecified, unscoped quantifier.) The rules
simultaneously introduce plausible patterns of
quantification and plausible disambiguations of
the various senses of have.v (e.g., have as part,
possess, eat, experience):

(/ ((det (! animal?)) have.v
(det (!1 animal-part?)))

(all-or-most x (x !)
(some e ((pair x e) enduring)
(some y (y !1)
((x have-as-part.v y) ** e)))))

(/ ((det (! agent?)) have.v
(det (!1 possession?)))

(many x (x !)
(some e
(some y (y !1)
(x possess.v y) ** e))))

(/ ((det (! animal?)) have.v
(det (!1 food?)))

(many x (x !)
(occasional e
(some y (y !1)
(x eat.v y) ** e))))

(/ ((det (! person?)) have.v
(det (!1 event?)))

(many x (x !)
(occasional e
(some y (y !1)
((x experience.v y) ** e)))))

Computable predicates such as animal? and
event? are evaluated with the help of WordNet
and other resources. Details of the logical [form]
need not concern us, but it should be noted that the
‘**’ connects sentences to events they character-



ize much as in various other theories of events and
situations.

Thus, for example, ((det dog.n have.v
(det tail.n)) is mapped to:

(all-or-most x (x dog.n
(some e ((pair x e) enduring)
(some y (y tail.n)
((x have-as-part.v y) ** e)))))

This expresses that for all or most dogs, the dog
has an enduring attribute (formalized as an agent-
event pair) of having a tail as a part.

Logical Interpretation:
The following transductions directly map some

simple parse trees to logical forms. The rules,
applied as often as possible to a parse tree, re-
place all syntactic constructs, recognizable from
(Treebank-style) phrase headers like (NN ...),
(NNP ...), (JJ ...), (NP ...), (VBD
...), (VP ...), (S ...), etc., by corre-
sponding semantic constructs. For example, “The
dog bit John Doe”, parsed as

(S (NP (DT the) (NN dog))
(VP (VBD bit)

(NP (NNP John) (NNP Doe))))

yields (the x (x dog.n) (x bit.v
John Doe.name)).
Type-extensions such as ‘.a’, ‘.n’, and ‘.v’
indicate adjectival, nominal, and verbal predi-
cates, and the extension ‘.name’ indicates an
individual constant (name); these are added by
the functions make-adj!, make-noun!, and
so on. The fourth rule below combines two
successive proper nouns (NNPs) into one. We
omit event variables, tense and other refinements.
(/ (JJ !) (make-adj! !))

(/ (NN !) (make-noun! !))

(/ (VBD !) (make-verb! !))

(/ ( *.a (NNP !.1) (NNP !.2) *.b)

( *.a (NNP !.1 !.2) *.b))

(/ (NNP +) (make-name! ( +)))

(/ (NP !) !)

(/ (S (NP (DT the) !) (VP +))

(the x (x !) (x +))

These rules are illustrative only, and are not fully
compositional, as they interpret an NP with a
determiner only in the context of a sentential
subject, and a VP only in the context of a senten-
tial predicate. Also, by scoping the variable of
quantification, they do too much work at once. A
more general approach would use compositional
rules such as (/ (S (!1 NP?) (!2 VP?))
((sem! !1) (sem! !2))), where the

sem! function again makes use of TTT, re-
cursively unwinding the semantics, with rules
like the first five above providing lexical-level
sem!-values.

We have also experimented with rendering log-
ical forms back into English, which is rather eas-
ier, mainly requiring dropping of variables and
brackets and some reshuffling of constituents.

5 Conclusion

The TTT language is well-suited to the applica-
tions it was aimed at, and is already proving useful
in current syntactic/semantic processing applica-
tions. It provides a very concise, transparent way
of specifying transformations that previously re-
quired extensive symbolic processing. Some re-
maining issues are efficient access to, and deploy-
ment of, rules that are locally relevant to a trans-
duction; and heuristics for executing matches and
transductions more efficiently (e.g., recognizing
various cases where a complex rule cannot pos-
sibly match a given tree, because the tree lacks
some constituents called for by the rule; or use of
efficient methods for matching regular-expression
subpatterns).

The language also holds promise for rule-
learning, thanks to its simple template-to-
template basic syntax. The kinds of learning en-
visioned are learning parse-tree repair rules, and
perhaps also LF repair rules and LF-to-English
rules.
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